You Searched For: 7-Hydroxycoumarin-3-carboxylic+acid


2,265  results were found

SearchResultCount:"2265"

Sort Results

List View Easy View

Rate These Search Results

Supplier: Peprotech
Description: PEDF is a noninhibitory serpin with neurotrophic, anti-angiogenic, and anti-tumorigenic properties. It is a 50 kDa glycoprotein produced and secreted in many tissues throughout the body. A major component of the anti-angiogenic action of PEDF is the induction of apoptosis in proliferating endothelial cells. In addition, PEDF is able to inhibit the activity of angiogenic factors, such as VEGF and FGF-2. The neuroprotective effects of PEDF are achieved through suppression of neuronal apoptosis induced by peroxide, glutamate, or other neurotoxins. The recent identification of a lipase-linked cell membrane receptor for PEDF (PEDF-R) that binds to PEDF with high affinity ( Notari, I. et al. J Biol Chem., Vol. 281, 38022-38037 ) should facilitate further elucidation of the underlying mechanisms of this pluripotent serpin. To date, PEDF-R is the only signaling receptor known to be used by a serpin family member. The unique range of PEDF activities implicate it as a potential therapeutic agent for the treatment of vasculature-related neurodegenerative diseases, such as age-related macular degeneration (AMD) and proliferative diabetic retinopathy (PDR). PEDF also has the potential to be useful in the treatment of various angiogenesis-related diseases including a number of cancers. Recombinant Human PEDF is a 44.5 kDa non-glycosylated protein containing 400 amino acid residues.

Catalog Number: (103011-304)
Supplier: Anaspec Inc
Description: 10-Acetyl-3,7-dihydroxyphenoxazine (ADHP), also called Amplex® Red and Ampliflu™ Red, is not only a sensitive and stable fluorogenic substrate for HRP but also an ultrasensitive probe for H2O2. In the presence of HRP and H2O2, ADHP generates highly fluorescent resorufin that has maximum absorption of 571 nm and maximum emission of 585 nm. Unlike other HRP substrates such as dihydrofluoresceins and dihydrorhodamines, the air-oxidation of ADHP is minimal. So far ADHP has been known as the most sensitive and stable fluorogenic probe for detecting HRP and H2O2. ADHP has been widely used to detect HRP in many immunoassays. On the other hand, Zhou, et al. have demonstrated that ADHP can be used to detect trace amount of H2O2. The ADHP-based H2O2 detection is at least one order of magnitude more sensitive than the commonly used scopoletin assay for H2O2. Because H2O2 is produced in many enzymatic redox reactions, ADHP can be used in coupled enzymatic reactions to detect the activity of many oxidases and/or related enzymes/substrates or cofactors such as glucose, acetylcholine and cholesterol, L-glutamate, amino acids, etc. We offer the best quality of ADHP with the most competitive price. The reagent can be purchased in a single 25 mg vial or can be custom-packaged to meet your special requirements.


Catalog Number: (10492-078)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Catalog Number: (10771-886)
Supplier: Peprotech
Description: The IGFs are mitogenic, polypeptide growth factors that stimulate the proliferation and survival of various cell types, including muscle, bone, and cartilage tissue in vitro . IGFs are predominantly produced by the liver, although a variety of tissues produce the IGFs at distinctive times. The IGFs belong to the Insulin gene family, which also contains insulin and relaxin. The IGFs are similar to insulin by structure and function, but have a much higher growth-promoting activity than insulin. IGF-II expression is influenced by placenta lactogen, while IGF-I expression is regulated by growth hormone. Both IGF-I and IGF-II signal through the tyrosine kinase type I receptor (IGF-IR), but IGF-II can also signal through the IGF-II/Mannose-6-phosphate receptor. Mature IGFs are generated by proteolytic processing of inactive precursor proteins, which contain N-terminal and C-terminal propeptide regions. Recombinant human IGF-I and IGF-II are globular proteins containing 70 and 67 amino acids, respectively, and 3 intra-molecular disulfide bonds. IGF-I LR3 is a recombinant analog of human IGF-I comprised of the complete IGF-I sequence, with an Arginine substitution for the third position Glutamic acid, and a 13 amino acid length N terminus peptide extension. Specifically engineered for higher biological potency Recombinant Human IGF-I LR3 is a 9.1 kDa, single, non-glycosylated polypeptide chain containing 83 amino acid residues.


Catalog Number: (10492-076)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Catalog Number: (10492-082)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Catalog Number: (10492-084)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Catalog Number: (76110-850)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3. These proteins form heterodimers, which alters the selectivity of the subunits. The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K. The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways. First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Supplier: Enzo Life Sciences
Description: Fodrin, also referred to as non-erythroid (αII-; brain) spectrin, is a tetrameric (αγ)2 actin-binding, fibrous protein, widely distributed in vertebrates, which forms part of the sub-membranous cytoskeleton within many cell types including neurons, and is particularly abundant with axons. The α-subunits of fodrins and spectrin are highly conserved phylogenetically, with the exception of human α-fodrin, which shares only 55-59% homology with erythroid-specific α-spectrins. The β-subunits of spectrin (and γ-subunits of fodrins) are species specific. The interleukin-1 converting enzyme (ICE) family of proteases has been implicated as important effectors of the apoptotic pathway, perhaps acting hierarchically in a protease cascade. Neuronal fodrin is known to be cleaved by calpain following ischaemic insult and it has been proposed that calpain and an unidentified protease play a role in the onset of neuronal death following transient forebrain ischaemia. Recently, an ICE-like protease has been implicated in the early cleavage of fodrin, producing a 150kDa fragment, proximal to CPP32 in Fas-induced and C2-ceramide mediated apoptosis. A cleavage product of α-fodrin has been proposed as a candidate autoantigen in primary Sjögren’s syndrome and α-fodrin has been shown to be the source of a so-called ‘inhibitory protein factor’ family, members of which have been shown to inhibit both GABA and ATP-dependent glutamate uptake into purified synaptic vesicles.

Catalog Number: (89341-658)
Supplier: Genetex
Description: GLUTAMATE DEHYDROGENASE PEP


Catalog Number: (10492-074)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Catalog Number: (10492-080)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Catalog Number: (10109-730)
Supplier: Prosci
Description: EBP is an integral membrane protein of the endoplasmic reticulum. It is a high affinity binding protein for the antiischemic phenylalkylamine Ca2+ antagonist [3H]emopamil and the photoaffinity label [3H]azidopamil. It is similar to sigma receptors and may be a member of a superfamily of high affinity drug-binding proteins in the endoplasmic reticulum of different tissues. These aromatic amino acid residues have been suggested to be involved in the drug transport by the P-glycoprotein. Mutations in EBP gene cause Chondrodysplasia punctata 2 (CDPX2; also known as Conradi-Hunermann syndrome).Emopamil-binding protein (EBP) is an integral membrane protein of the endoplasmic reticulum. It is a high affinity binding protein for the antiischemic phenylalkylamine Ca2+ antagonist [3H]emopamil and the photoaffinity label [3H]azidopamil. It is similar to sigma receptors and may be a member of a superfamily of high affinity drug-binding proteins in the endoplasmic reticulum of different tissues. EBP shares structural features with bacterial and eukaryontic drug transporting proteins. It has four putative transmembrane segments and contains two conserved glutamate residues which may be involved in the transport of cationic amphiphilics. Another prominent feature of EBP is its high content of aromatic amino acid residues (>23%) in its transmembrane segments. These aromatic amino acid residues have been suggested to be involved in the drug transport by the P-glycoprotein. Mutations in this gene cause Chondrodysplasia punctata 2 (CDPX2; also known as Conradi-Hunermann syndrome).


Catalog Number: (10492-062)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.


Catalog Number: (77888-992)
Supplier: AFG Bioscience
Description: BENZYL Α-​D-​MANNOPYRANOSIDE 5G

New Product


Supplier: Peprotech
Description: The IGFs are mitogenic, polypeptide growth factors that stimulate the proliferation and survival of various cell types, including muscle, bone, and cartilage tissue in vitro . IGFs are predominantly produced by the liver, although a variety of tissues produce the IGFs at distinctive times. The IGFs belong to the Insulin gene family, which also contains insulin and relaxin. The IGFs are similar to insulin by structure and function, but have a much higher growth-promoting activity than insulin. IGF-II expression is influenced by placenta lactogen, while IGF-I expression is regulated by growth hormone. Both IGF-I and IGF-II signal through the tyrosine kinase type I receptor (IGF-IR), but IGF-II can also signal through the IGF-II/Mannose-6-phosphate receptor. Mature IGFs are generated by proteolytic processing of inactive precursor proteins, which contain N-terminal and C-terminal propeptide regions. Recombinant Human IGF-I and IGF-II are globular proteins containing 70 and 67 amino acids, respectively, and 3 intra-molecular disulfide bonds. IGF-I LR3 is a recombinant analog of human IGF-I comprised of the complete IGF-I sequence, with an Arginine substitution for the third position Glutamic acid, and a 13 amino acid length N terminus peptide extension. Specifically engineered for higher biological potency Recombinant Human IGF-I LR3 is a 9.1 kDa, single, non-glycosylated polypeptide chain containing 83 amino acid residues.

Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
You must log in to order restricted items. We request that you provide the required business documentation to purchase this product for the first time.

To order chemicals, medical devices, or other restricted products please provide identification that includes your business name and shipping address via email CMD_NA@vwr.com or fax 484.881.5997 referencing your VWR account number . Acceptable forms of identification are:

  • issued document with your organization's Federal Tax ID Number
  • Government issued document with your organization's Resale Tax ID Number
  • Any other Government ID that includes the business name and address


VWR will not lift restrictions for residential shipping addresses.

-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is currently unavailable but limited stock may be available in our extended warehouse network. Please call 1-800-932-5000 and a VWR Customer Service Representative will help you.
529 - 544 of 2,265
no targeter for Bottom