You Searched For: Dichloroacetic+acid+(DCA)


0  results were found

SearchResultCount:"0"

Sort Results

List View Easy View

Rate These Search Results

Supplier: TCI America
Description: [Spectrophotometric reagent for alkaline earth metals and indicator for the precipitation titration of SO4 with Ba]
CAS Number: 14979-11-4
MDL Number: MFCD00151118
Molecular Formula: C24H20N4O14S4
Molecular Weight: 716.68
Form: Crystal
Color: Deep Yellow Red
Catalog Number: (10372-562)
Supplier: Bioss
Description: The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, this protein can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of this protein forms a complex with SMAD4, which is important for its function in the transcription regulation. This protein is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation. Alternatively spliced transcript variants encoding the same protein have been observed. [provided by RefSeq].


Catalog Number: (CAPI23456)
Supplier: Thermo Scientific
Description: The Pierce™ Controlled Protein-Protein Crosslinking Kit contains essential crosslinkers, modification reagents and buffers for conjugating antibodies, enzymes and other purified proteins needed as probes.They insert an unbreakable molecular bridge between two proteins with easy-to-control stepwise coupling.

Catalog Number: (10105-006)
Supplier: Prosci
Description: SMAD1 belongs to the SMAD family. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. SMAD1 mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, SMAD1 can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of SMAD1 forms a complex with SMAD4, which is important for its function in the transcription regulation. SMAD1 is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation.The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, this protein can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of this protein forms a complex with SMAD4, which is important for its function in the transcription regulation. This protein is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation. Alternatively spliced transcript variants encoding the same protein have been observed.The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, this protein can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of this protein forms a complex with SMAD4, which is important for its function in the transcription regulation. This protein is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation. Alternatively spliced transcript variants encoding the same protein have been observed.


Supplier: Thermo Scientific Chemicals
Description: Fuchsin (acid)
Catalog Number: (CAPIPA5-13083)
Supplier: Thermo Scientific
Description: This antibody is predicted to react with bovine, chicken, canine, mouse, porcine, rat and zebrafish based on sequence homology. The protein belongs to the SMAD, a family of proteins similar to the proteins of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signal of the transforming growth factor (TGF)-beta, and thus regulates multiple cellular processes, such as cell proliferation, apoptosis, and differentiation. This protein is recruited to the TGF-beta receptors through its interaction with the SMAD anchor for receptor activation (SARA) protein. In response to TGF-beta signal, this protein is phosphorylated by the TGF-beta receptors. The phosphorylation induces the dissociation of this protein with SARA and the association with the family member SMAD4. The association with SMAD4 is important for the translocation of this protein into the nucleus, where it binds to target promoters and forms a transcription repressor complex with other cofactors. This protein can also be phosphorylated by activin type 1 receptor kinase, and mediates the signal from the activin.


Catalog Number: (76084-082)
Supplier: Bioss
Description: The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, this protein can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of this protein forms a complex with SMAD4, which is important for its function in the transcription regulation. This protein is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation. Alternatively spliced transcript variants encoding the same protein have been observed.


Catalog Number: (10107-306)
Supplier: Prosci
Description: SMAD1 belongs to the SMAD family. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. SMAD1 mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, SMAD1 can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of SMAD1 forms a complex with SMAD4, which is important for its function in the transcription regulation. SMAD1 is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation.The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, this protein can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of this protein forms a complex with SMAD4, which is important for its function in the transcription regulation. This protein is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation. Alternatively spliced transcript variants encoding the same protein have been observed.


Catalog Number: (10107-308)
Supplier: Prosci
Description: SMAD1 belongs to the SMAD family. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. SMAD1 mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, SMAD1 can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of SMAD1 forms a complex with SMAD4, which is important for its function in the transcription regulation. SMAD1 is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation.The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signals of the bone morphogenetic proteins (BMPs), which are involved in a range of biological activities including cell growth, apoptosis, morphogenesis, development and immune responses. In response to BMP ligands, this protein can be phosphorylated and activated by the BMP receptor kinase. The phosphorylated form of this protein forms a complex with SMAD4, which is important for its function in the transcription regulation. This protein is a target for SMAD-specific E3 ubiquitin ligases, such as SMURF1 and SMURF2, and undergoes ubiquitination and proteasome-mediated degradation. Alternatively spliced transcript variants encoding the same protein have been observed.


Catalog Number: (TCC0700-025G)
Supplier: TCI America
Description: CAS Number: 6104-59-2
MDL Number: MFCD00041762
Molecular Formula: C45H45N3O7S2
Molecular Weight: 825.97
Form: Crystal
Color: Purple

Supplier: CUBE BIOTECH
Description: AASTYs (Acrylic acid-co-styrenes) - like AASTY 6-50 - are highly-alternating copolymers, well-suited for the generation of native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 6-50 gets its name from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general lighter AASTYs, like 6-50 tend to be more aggressive, while heavier AASTYs, such as 11-45 show higher thermodynamic stability.

The exact composition of AASTY copolymers shows different extraction efficiency, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made using controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.

Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022

Supplier: CUBE BIOTECH
Description: AASTYs (Acrylic acid-co-styrenes) - like AASTY 11-45 - are highly alternating copolymers, well-suited for the generation of native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 11-45 gets its name from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general lighter AASTYs, like 6-45 tend to be more aggressive, while heavier AASTYs, such as 11-45 show higher thermodynamic stability.

The exact composition of AASTY copolymers shows different extraction efficiency, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made by controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.

Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process, we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022

Catalog Number: (CAAAJ64297-18)
Supplier: Thermo Scientific Chemicals
Description: Crystalline powder

Catalog Number: (CAAAJ61384-K2)
Supplier: Thermo Scientific Chemicals
Description: Liquid

Supplier: CUBE BIOTECH
Description: AASTYs (Acrylic acid-co-styrenes) - like AASTY 6-55 - are highly-alternating copolymers, well-suited for generating native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 6-55 gets its name from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general, lighter AASTYs, like 6-55 tend to be more aggressive, while heavier AASTYs, such as 11-45 show higher thermodynamic stability.

The exact composition of AASTY copolymers shows different extraction efficiency, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made by controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.

Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process, we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022

Supplier: CUBE BIOTECH
Description: AASTYs (Acrylic acid-co-styrenes) - like AASTY 11-55 - are highly alternating copolymers, well-suited for generating native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 11-55 is named from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general lighter AASTYs, like 6-45 tend to be more aggressive, while heavier AASTYs, such as 11-55 show higher thermodynamic stability.

The exact composition of AASTY copolymers shows different extraction efficiencies, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made by controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.

Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022

Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
You must log in to order restricted items. We request that you provide the required business documentation to purchase this product for the first time.

To order chemicals, medical devices, or other restricted products please provide identification that includes your business name and shipping address via email CMD_NA@vwr.com or fax 484.881.5997 referencing your VWR account number . Acceptable forms of identification are:

  • issued document with your organization's Federal Tax ID Number
  • Government issued document with your organization's Resale Tax ID Number
  • Any other Government ID that includes the business name and address


VWR will not lift restrictions for residential shipping addresses.

-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is currently unavailable but limited stock may be available in our extended warehouse network. Please call 1-800-932-5000 and a VWR Customer Service Representative will help you.
no targeter for Bottom